Positive extension problems for a class of structured matrices
نویسندگان
چکیده
We consider positive definite (semidefinite) extension problems for matrices with structure determined via a Stein equation. Some related extremal problems (maximal and minimal rank extensions, maximal determinant extension) are also considered. Connections with interpolation problems for a certain class of analytic contractive valued functions on the unit ball of Cd are discussed. © 2003 Published by Elsevier Inc. AMS classification: 15A24; 47A57
منابع مشابه
An extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملCompletely positive reformulations for polynomial optimization
Polynomial optimization encompasses a very rich class of problems in which both the objective and constraints can be written in terms of polynomials on the decision variables. There is a well established body of research on quadratic polynomial optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dua...
متن کاملImproving Chernoff criterion for classification by using the filled function
Linear discriminant analysis is a well-known matrix-based dimensionality reduction method. It is a supervised feature extraction method used in two-class classification problems. However, it is incapable of dealing with data in which classes have unequal covariance matrices. Taking this issue, the Chernoff distance is an appropriate criterion to measure distances between distributions. In the p...
متن کاملOn a new class of structured matrices related to the discrete skew-self-adjoint Dirac systems
A new class of the structured matrices related to the discrete skew-self-adjoint Dirac systems is introduced. The corresponding matrix identities and inversion procedure are treated. Analogs of the Schur coefficients and of the Christoffel-Darboux formula are studied. It is shown that the structured matrices from this class are always positive-definite, and applications for an inverse problem f...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کامل